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We consider several statistical models defined on the Farey fractions. Two of
these models may be regarded as ‘‘spin chains,’’ with long-range interactions,
while another arises in the study of multifractals associated with chaotic maps
exhibiting intermittency. We prove that these models all have the same free
energy. Their thermodynamic behavior is determined by the spectrum of the
transfer operator (Ruelle–Perron–Frobenius operator), which is defined using
the maps (presentation functions) generating the Farey ‘‘tree.’’ The spectrum of
this operator was completely determined by Prellberg. It follows that these
models have a second-order phase transition with a specific heat divergence of
the form C ’ [E ln2 E]−1. The spin chain models are also rigorously known to
have a discontinuity in the magnetization at the phase transition.

KEY WORDS: Phase transition; Farey fractions; transfer operator; spin chain;
intermittency.

1. INTRODUCTION

In this work we consider several statistical models defined on the Farey
fractions. One is the Farey fraction spin chain, a one-dimensional statistical
model first proposed by two of the authors. (1) This work has spawned a
number of further studies, by both physicists and number theorists. (2–4) One
can define the model as a periodic chain of sites with two possible spin
states (A or B) at each site. The interactions are long-range, which allows a



phase transition to exist in this one-dimensional system. The Farey spin
chain is rigorously known to exhibit a single phase transition at tempera-
ture bc=2. (1) The phase transition itself is most unusual. The low temper-
ature state is completely ordered. (1, 4) In the limit of a long chain, for
b > bc, the system is either all A or all B. Therefore the free energy is con-
stant and the magnetization (defined via the difference in the number of
spins in state A vs. those in state B) is completely saturated over this entire
temperature range. Thus, even though the system has a phase transition at
finite temperature, there are no thermal effects at all in the ordered state.

At temperatures above the phase transition (for b < bc), fluctuations
occur, and the free energy decreases with b. Here the system is paramagne-
tic. Since there is no symmetry-breaking field in the model, the magnetiza-
tion vanishes. Thus the magnetization jumps from its saturated value in the
low temperature phase, to zero in the high temperature phase. (5) This might
suggest a first-order phase transition, but the behavior with temperature
is different. In this work, we prove that as a function of temperature, the
transition is second-order, and the same as that which occurs in the Knauf
spin chain (see below) and the ‘‘Farey tree’’ multifractal model. The latter
exhibits intermittency, and was studied by Feigenbaum, Procaccia, and
Tél. (6)

The Farey spin chain is defined in an unusual way. It is given in terms
of the energy of each possible configuration, rather than via a Hamilto-
nian. There is no known way to express the energy exactly in terms of the
spin variables. (1) Further, numerical results indicate that when one does,
the Hamiltonian has all possible even interactions (and they are all ferro-
magnetic), so an explicit Hamiltonian representation, even if one could find
it, would be exceedingly complicated.

In previous work, (1) it was proven that the Farey spin chain free
energy (per site, in the infinite chain limit) is the exactly same as the free
energy of an earlier, related spin chain model due to Knauf. (7) In the
present paper, we extend this result in several ways.

We begin by defining the spin chain and Farey tree models in Sec-
tion 2. In Section 3 we prove that the free energy for the Farey tree model
is the same as the free energy of the Knauf model. This is established by
use of bounds on the Knauf partition function. In Section 4, we examine
the Farey model, which is specified by the maps (presentation functions (6))
that generate the Farey tree. The free energy in this case is given by the
logarithm of the largest eigenvalue l(b) of the transfer operator. Some
years ago, Knauf (8) realized that the free energy of the Knauf model is also
given by the logarithm of l(b), (without noting the connection to the Farey
tree model, however). Combining his result with our analysis rigorously
shows the equality of all four free energies—for the Farey spin chain,
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Knauf model, Farey tree model, and Farey model. In Section 5, by using
the results of ref. 9, we show that the phase transition is continuous (and
of second order, i.e., the specific heat is divergent). It also follows that the
phase transition in the Farey model occurs at the Hausdorff dimension of
the Farey tree system, as expected. We conclude by briefly pointing out
some connections with number theory and mentioning some implications
of scaling theory for the spin chain models.

2. DEFINITIONS

We use the notation r (n)k :=
n(n)k

d(n)k
for the Farey fractions, where n is the

order of the Farey fraction in level k. Level k=0 consists of the two frac-
tions {01 ,

1
1}. Succeeding levels are generated by keeping all the fractions

from level k in level k+1, and including new fractions. The new fractions
at level k+1 are defined via d (2n)k+1 :=d

(n)
k +d

(n+1)
k and n (2n)k+1 :=n

(n)
k +n

(n+1)
k , so

that

k=0 {01 ,
1
1}

k=1 {01 ,
1
2 ,
1
1}

k=2 {01 ,
1
3 ,
1
2 ,
2
3 ,
1
1}, etc.

Note that n=1,..., 2k+1. When the Farey fractions are defined using
matrices (spin states) A and B, the level k corresponds to the number of
matrices and hence the length of the spin chain. (1)

It follows that the fractions in a given level are always in increasing
order. The Farey fractions differ from the Farey ‘‘tree,’’ (6) where only the
new fractions are kept at each succeeding level.

The partition function for the Farey spin chain (FC) may be written
as (1)

ZFCk (b) :=C
2k

n=1

1
(d (n)k +n

(n+1)
k )b

, b ¥ R. (1)

Note from (1) that there are 2k states at level k with energies E (n)k =
ln(d (n)k +n

(n+1)
k ). The Farey fractions (and hence the energies) can also be

defined using the spin variables A and B mentioned above, (1) but this is not
needed here.

For present purposes, it is convenient to use the partition function for
the Knauf model, (5) which is rigorously known to have the same free
energy as the Farey spin chain. (1) The Knauf partition function may be
defined via

ZKk (b) :=C
2k

n=1

1
(d (n)k )

b
, b ¥ R, (2)
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so that a chain of length k has 2k states of energy E (n)k =ln(d (n)k ). The par-
tition function can be written as sum of even and odd terms

ZKk (b)=Z
K
k, e(b)+Z

K
k, o(b), (3)

where

ZKk, e(b) :=C
2k−1

n=1

1
(d (2n)k )

b
, ZKk, o(b) :=C

2k−1

n=1

1
(d (2n−1)k )b

.

From the definition of the Farey fractions immediately follows

d (2n)k =d
(2n−1)
k +d (2n+1)k (4)

and

d (2n−1)k =d(n)k−1. (5)

From (4) we have

d (2n)k > d
(2n−1)
k , d (2n)k > d

(2n+1)
k ,

while from (5) we obtain ZKk, o(b)=Z
K
k−1(b) so that

ZKk, e(b)=Z
K
k (b)−Z

K
k−1(b). (6)

The Farey tree model of Feigenbaum, Procaccia, and Tél (6) uses the
‘‘Farey tree’’ rather than the Farey fractions, which means retaining only
the 2k−1 even fractions at level k > 1 so we obtain the set

{r (2n)k | n=1,..., 2
k−1, k > 1}.

The Farey tree partition function is defined by

ZFk (b) :=C
2k−2

n=1
(r (4n)k −r

(4n−2)
k )b. (7)

The positive quantities (r (4n)k −r
(4n−2)
k ) are the radii of the ‘‘balls’’ in this

model. Note that we can also express this partition function using Farey
tree denominators only. One finds

ZFk (b)=C
2k−2

n=1

1 3
d (4n)k d

(4n−2)
k

2b.
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3. EQUIVALENCE OF THE FAREY TREE AND KNAUF FREE

ENERGIES

In this section, we show the equivalence of the free energies of the
Knauf and Farey tree models. We begin by finding bounds for the Farey
tree partition function ZFk (b) in terms of the Knauf partition function. We
are interested in the case b > 0, where there is a phase transition, but it will
be easy to see that the free energies are equal for all b ¥ R.

The Farey fractions satisfy r (n)k −r
(n−1)
k =1/(d(n)k d

(n−1)
k ). This may be

shown for instance using the matrix chain representation in ref. 1. Thus

r (4n)k −r
(4n−2)
k =r (4n)k −r

(4n−1)
k +r (4n−1)k −r (4n−2)k

=
1

d (4n)k d
(4n−1)
k

+
1

d (4n−1)k d (4n−2)k

>
1

(d(4n)k )
2 , (8)

and similarly r (4n)k −r
(4n−2)
k > 1/(d(4n−2)k )2. From (8) we also find

r (4n)k −r
(4n−2)
k <

2
(d (4n−1)k )2

. (9)

Using (7) and (8), for b > 0, gives

ZFk (b) > C
2k−2

n=1

1
(d (4n)k )

2b , (10)

and also ZFk (b) >;2k−2

n=1 1/(d
(4n−2)
k )2b. Adding these two inequalities we find

a lower bound for the Feigenbaum partition function

ZFk (b) >
1
2
C
2k−1

n=1

1
(d (2n)k )

2b=
1
2
ZKk, e(2b). (11)

Using the inequality (9) and the relation (5) gives the upper bound

ZFk (b) < 2
b C
2k−2

n=1

1
(d (4n−1)k )2b

=2b C
2k−2

n=1

1
(d (2n)k−1)

2b=2
bZKk−1, e(2b). (12)

Thus the Farey tree partition function at b is bounded both above and
below by the even part of the Knauf partition function at 2b.

1
2 Z

K
k, e(2b) < Z

F
k (b) < 2

bZKk−1, e(2b), b > 0 (13)
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Similarly, we can find, that

2bZKk−1, e(2b) < Z
F
k (b) <

1
2 Z

K
k, e(2b), b < 0. (14)

Finally, for b=0 it is obvious that

ZFk (b)=
1
4 Z

K
k (2b).

The free energy per site is defined by

f(b) :=
−1
b

lim
kQ.

ln Zk(b)
k

. (15)

(Recall that the level k corresponds to the length of the spin chain.) We
now use (13) to prove that

fF(b)=fK(2b).

where fF refers to the free energy obtained from ZFk .
For b > 1 one has (7)

ZKk (2b)Ł
kQ. z(2b−1)

z(2b)
,

which implies that fK(2b)=0. Also, by (6),

ZKk, e(2b)Ł
kQ. 0,

and using (13) gives

ZFk (b)Ł
kQ. 0.

Since ZFk (b) > 0,

− ln ZFk (b)
k

\ 0S fF(b) \ 0.

Note that for b=1 one has ZFk (1) [ 1, since this partition function reduces
to a simple sum of Farey tree fraction separations (ball lengths), which
cannot exceed the length of the interval [0, 1]. Therefore the inequality still
holds (and in fact, as shown below, fF(1)=0).

Now clearly

ZKk, e(2b) >
1

(k+1)2b
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so by (13) we find

ZFk (b) >
1
2

1
(k+1)2b

,

and

0 [
− ln ZFk (b)
k

<
2b ln(k+1)

k
+

ln 2
k
.

Thus we have

fF(b)=fK(2b)=0 for b \ 1. (16)

The validity of fK(2)=0 is clear from the treatment in ref. 8 and the
remark at the end of this section.

For b < 1 we can write

ZKk, e=Z
K
k −Z

K
k−1=Z

K
k
11−Z

K
k−1

ZKk
2 ,

so

−
ln ZKk, e
k
=−

ln ZKk
k
−

ln 11−Z
K
k−1

ZKk
2

k
. (17)

It is shown in ref. 5 (by arguments using the transfer operator, see below)
that for 0 < b < 1 the free energies obtained from ZKk and ZKk, e are the
same, thus for kQ.

ln 11−Z
K
k−1

ZKk
2

k
Q 0. (18)

(This also can be shown directly by considering the equation ZKk (2b)=
1+;k

j=1 Z
K
j, e(2b), which follows from (6). For 0 < b < 1 the series is

bounded by a geometric series because of the inequality ZKk, e > 2
1−bZKk−1, e.)

For b [ 0 it is easy to check that ZKk−1, e(2b)/Z
K
k, e(2b) [ 1/2. Thus (18)

holds for all b < 1.
Using (13) (and, for b [ 0, (14) and the line below) then establishes

fF(b)=fK(2b) for b < 1. (19)
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Note that, as mentioned, the Knauf partition function ZKk (2b) is finite
as kQ. for b > 1. (7) Using (6) and (13) one sees immediately that the
Farey tree partition function ZFk (b) vanishes in this limit for b > 1. At
b=1, it follows immediately from the definition (7) and simple properties
of the Farey fractions that 0 < ZFk (1) < 1. For b < 1, since fK(2b) < 0, (5)

and using (19) and (15) it follows that ZFk (b) is infinite. This establishes
rigorously that the Hausdorff dimension of the set formed by the ‘‘balls’’ is
bH=1, as expected.

Finaly, consider (13) and the fact, mentioned above, that ZFk (1) < 1. It
follows that

ZKk, e(2)=C
2k−1

n=1

1
(d (2n)k )

2 < 2,

so that this sum over the ‘‘new’’ Farey denominators is bounded by 2 at all
levels. Since the ‘‘new’’ denominators at level k−1 become ‘‘old’’ denomi-
nators at level k, one also sees that ZKk (2) [ 2k+1.

4. TRANSFER OPERATOR APPROACH

In this section we consider the transfer operator (Ruelle–Perron–
Frobenius operator) of the Farey map. The previous section shows
rigorously that the free energies of the Knauf and Farey fraction spin chain
and Farey tree model are the same. Here we prove that they (as well as the
free energy of the Farey tree model in a certain approximation specified
below) are simply given by the largest eigenvalue of this operator. The next
section considers the asymptotic behavior of this eigenvalue near the phase
transition, known from the work of Prellberg, (10) which specifies the order
of the phase transition.

The Ruelle–Perron–Frobenius operator K associated with a map f
(piecewise monotonic transformation of closed interval I) is given by

Kbj(x)= C
f(y)=x

|fŒ(y)|−b j(y), b ¥ R, (20)

where the sum is over each strictly monotonic and continuous piece of f
satisfying the summation condition. See refs. 9 and 11 for a more complete
discussion.

The Farey map is defined by refs. 6 and 9

f(x)=˛f0(x)=x/(1−x), 0 [ x [ 1/2,
f1(x)=(1−x)/x, 1/2 < x [ 1.

(21)
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The operator then consists of two corresponding terms K0 and K1 which
can be identified as ‘‘intermittent’’ and ‘‘chaotic’’ parts, respectively. (10) We
may write Kb=K0+K1 where Kij(x)=|F

−

i(x)|
b j(Fi(x)) and the ‘‘pre-

sentation function’’ (6) Fi is the inverse map of fi (see (30) later). Thus

Kbj(x)=(1+x)−2b 5j 1
x
1+x
2+j 1 1

1+x
26 , b ¥ R. (22)

Following the thermodynamic formalism approach (12) it was shown in
refs. 9 and 11 that the largest eigenvalue of Kb in (22) (defined on the
space of functions with bounded variation) is related to a free energy via
f(b)=−b−1 ln l(b) for b ¥ R. We call this the free energy of the Farey
model.

In this section we consider Kb acting on L2 and show that the free
energy obtained from its largest eigenvalue is the same as the free energy
of the Knauf and Farey tree model (in its original version or using the
approximation below) for 0 < b < 1. In the next section, we prove that the
free energy of the Farey model in this b range is also the same. For b > 1,
the free energy of any of these models is already known to be zero (see
Section 3 or ref. 10).

The Knauf spin chain at level k−1 may be described by a vector
Yk−1(2b) ¥ l2(N0), the first component of which is the ‘‘even’’ Knauf parti-
tion function ZKk, e(2b). The ‘‘transfer operator’’ of the Knauf spin chain
then maps Yk−1(2b) to the next level:

Yk(2b)=C̃(2b) Yk−1(2b), (23)

where C̃(2b): l2(N0)Q l2(N0) and (5)

C̃(2b)i, j=(−1) j 2−2b−i−j 5R
−2b−i
j
S+C

i

s=0
2 s R i
s
S R −2b−i

j−s
S6 , (24)

(i, j ¥N0), with the generalized binomial coefficients (ab)=(P
b−1
i=1(a−i))/b!,

a ¥ R, b ¥N0, and (ab)=0 if b < 0. Knauf (8) has further shown that for
0 < b < 1, C̃(2b) has the same largest eigenvalue l(b) as Kb: L2((0, 1))Q
L2((0, 1)). The argument involves expanding (22) about x=1 with j(x)=
;.

m=0 am(1−x)
m. Doing this, one finds that the action of Kb on the quan-

tities am (note that am=(−1)m j (m)(1)/m!) is given by C̃T(2b), where T
denotes transpose.

In addition, C̃T(2b) is independent of k, so the components of the
vector Xk(2b) (defined using (23) with C̃T(2b) replacing C̃(2b)) are
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proportional to the Taylor series coefficients of an associated function
f (b)k (x). This function therefore satisfies

f (b)k (x)=(1+x)
−2b 5f (b)k−1 1

x
1+x
2+f (b)k−1 1

1
1+x
26 . (25)

It is shown in ref. 5 that C̃(2b) (and hence C̃T(2b)) is an operator of
Perron–Frobenius type for 0 < b < 1. Thus l(b) is a simple eigenvalue (the
same for C̃ or C̃T). The corresponding eigenvector is strictly positive and
unique, and may be obtained (for C̃T) via V(2b)=limkQ. Xk(2b)/||Xk(2b)||.
In addition, it follows that for 0 < b < 1 the eigenvalue l(b) > 1 is an ana-
lytic function of b, and its positive normalized eigenvector V(2b) is ana-
lytic in b. Hence

f (b)k ’ l(b)k f (b), (26)

where f (b)(x) is the normalized eigenvector of Kb: L2((0, 1))Q L2((0, 1))
corresponding to V(2b). Substituting this result in (25) we get, for
0 < b < 1,

l(b) f (b)(x)=(1+x)−2b 5f (b) 1 x
1+x
2+f (b) 1 1

1+x
26 , (27)

which is equivalent to (22) when l(b) is the maximal eigenvalue. Then

lim
kQ.

ZKk, e(2b)
ZKk−1, e(2b)

=l(b) (28)

together with (15), (17), and (18) give us the Knauf free energy as expected

fK(2b)=−
1
b

ln l(b), 0 < b < 1. (29)

Note that for b \ 1, fK(2b)=0 (see Section 3) and also that f(b)=0 for
b \ 1 follows from the spectrum of the operator Kb (ref. 10, see also the
next section). Thus the free energy of the Farey spin chain, Farey tree
and Knauf models are given by the largest eigenvalue of the Ruelle–
Perron–Frobenius operator for b > 0.

To further examine these connections we follow the treatment in ref. 6.
We focus on (27) and make use of presentation functions. The Farey tree
can be generated by two presentation functions

F0=
x
1+x

, F1=1−F0=
1
1+x

. (30)
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Every fraction at each level k > 1 of the Farey tree can be reached by
composition of k functions FE (E ¥ {0, 1}) evaluated at xg=1

2 . For example,
at level k=3, F0 p F1(

1
2)=

2
5=r

(4)
3 . So the diameter of every ‘‘ball’’ in the

Farey tree model (see (7)) can be written as

r(4n)k −r
(4n−2)
k =|FE1 p FE2 p · · · p FEk−1 (F0(x

g))−FE1 p FE2 p · · · p FEk−1 (F1(x
g))|.
(31)

Note that the sequence of presentation functions in the two Farey fractions
in (31) is identical except for the FEk , i.e., only the presentation functions
applied first to xg differ. As kQ., the diameter of the balls converges to
zero (this follows easily from (8)). Therefore it is reasonable to suppose that
for k sufficiently large each diameter can be approximated by the derivative
of the composed function with respect to xg. Then, using the chain rule,
(31) behaves asymptotically as

r (4n)k −r
(4n−2)
k ’ |F −E1 (FE2 p FE3 p · · · ) F

−

E2
(FE3 p FE4 p · · · ) · · · |. (32)

Thus we can write for the partition function

ZFk ’ · · · C
Ek

|F −Ek (FEk+1 p FEk+2 p · · · )|
b C
Ek−1

|F −Ek−1 (FEk p FEk+1 p · · · )|
b · · · (33)

Notice that the sum over Ek and all lower indexed sums to its right depend
only upon (FEk+1 p FEk+2 p · · · ). This motivates the definition

k (b)k (x) :=C
Ek

|F −Ek (x)|
b C
Ek−1

|F −Ek−1 (FEk (x))|
b · · · , (34)

where (FEk p FEk+1 p · · · ) is denoted by x. One then finds

k (b)k (x)=C
E

|F −E(x)|
b k (b)k−1(FE(x)). (35)

Note that since each presentation function FE is a ratio of polynomials, one
can extend the definition of k (b)k (x) to the whole interval [0, 1]. Substitut-
ing for F and FŒ we obtain (25) (with kk replacing fk). Therefore choosing
k (b)0 (x) > 0 we find k (b)k Q k (b) as kQ., with the function k (b) proportio-
nal to f (b) (the eigenfunction with the maximum eigenvalue l(b)). This
establishes that the approximation (32) is exact in the limit kQ., as
expected.

Finally, it is interesting to note some connections with number theory.
Specifically, for l=1, (27) is known as the Lewis equation and has been
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studied (for complex b) because of its connection to the Selberg z-function
and period polynomials (cusp forms of the modular group). (13) An operator
related to Kb (22) also appears in this context and is called the Mayer
operator. (14)

5. ORDER OF THE PHASE TRANSITION AND DISCUSSION

In the preceding, we have shown that the Farey spin chain, (1) the
Knauf spin chain (5) and (either version of ) the Farey tree model (6) all have
the same free energy. Further, for 0 < b < 1 their free energy is given by the
largest eigenvalue of the Farey model transfer operator acting on L2 (22).
Here we show that the transfer operator acting on the space of functions of
bounded variation has the same leading eigenvalue in this b range, which
allows us to make use of the results of Prellberg. The corresponding
equality of free energies for b > 1 (where the free energy vanishes) follows
from known results, as remarked in the previous section.

Prellberg has examined the spectrum of this operator acting on the
space of functions with bounded variation (9) (details are in ref. 11). In order
to make use of his results, we must show that the largest eigenvalue in this
space is the same as that in L2((0, 1)). To prove this we examine the corre-
sponding eigenvectors. Expanding j(x), the eigenvector in the L2 space,
about x=1 as above, one has j(x)=;.

m=0 am(1−x)
m. Thus j(1) is finite,

since the coefficients am in this expansion are proportional to the compo-
nents of the eigenvector of C̃T(2b) of largest eigenvalue (see Section 4).
Furthermore, the am are all positive, since the eigenvector of C̃T is positive.
Therefore j(x) is a (strictly) decreasing function on [0, 1]. Finally, setting
x=0 in (27) shows that j(0) is finite whenever l ] 1. Therefore, j(x) is of
bounded variation for 0 < b < 1, and since both eigenvectors are unique
(up to multiplicative constants) their eigenvalues must coincide in this
range of b values.

The result of Prellberg of interest here is

bf(b)=c
1−b

ln(1−b)
[1+o(1)], 0 < b < 1,

where c > 0, and bf(b)=0 for b \ 1. This form for the free energy is
equivalent to that given in ref. 6, as may be seen by use of the Lambert
W-function.

The non-analyticity at b=1 results in a phase transition of second
order, since the second derivative of f(b) diverges as [(1−b)(ln(1−b))2]−1

as bQ 1−. This result agrees with ref. 5, where it is proven rigorously that
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the phase transition is at most second order. Note that the largest eigen-
value is discrete for b < 1. For b > 1, the discrete spectrum disappears and
the largest eigenvalue becomes l=1, which is the upper boundary of the
continuous spectrum for all b.

Our result for the free energy also has some implications for the
number of states of the spin chain models. The Knauf model partition
function may be expressed as a Dirichlet series (7)

ZKk (b)=C
.

n=1
fk(n) n−b, (36)

where fk(n) is non-zero when n is a Farey denominator at level k. This
function converges from below to the Euler totient function f(n) as kQ..
Since the energy of an allowed state is E=ln n, fk(n) gives the number of
states of energy E at level k. The functions fk and f are very irregular. Our
result for the free energy then shows how the Dirichlet series in (36)
diverges as kQ. for small (but positive!) (2−b). (Recall that the phase
transition in the spin chains appears at bc=2, since a factor of 2 appears in
comparing with the Farey tree model, see (29).) For the Farey spin chain,
an equation with the same form as (36) may also be written, with the same
leading divergent behavior. Here the limit of the function corresponding to
fk(n) is not known, though some related information is available. (3)

One can also consider the implications of scaling theory for the two
spin chain models. It is known that the magnetization (defined via the dif-
ference in the number of spins in state A vs. those in state B) is one for
temperatures below the transition and zero above it. (4, 5) Thus the magneti-
zation jumps from its fully saturated value to zero at the transition. This
would lead one to suspect a first-order transition, but as we have seen, the
behavior with temperature is second-order. However, both these results
seem to be consistent with scaling theory, with renormalization group
eigenvalues yT=d and yh=d, where d is the dimensionality, and using
(2−b)/ln(2−b) as the temperature scaling variable. We plan to report
more fully on this elsewhere.
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